For Employers
Data Engineer


STACKTECH PTE. LTD.
13 days ago
Posted date
13 days ago
N/A
Minimum level
N/A
Full-timeEmployment type
Full-time
ITJob category
IT
Data Engineer

Location: Singapore

Team: Data & Analytics

Reports to: Head of Data / Data Engineering Lead

Role Overview

We are looking for a Data Engineer with 2+ years of relevant experience to design, build, and operate scalable, reliable, production-grade data platforms that support analytics, machine learning, and business decision-making.

This role covers both real-time data streaming and batch processing, with a strong focus on

engineering quality, system reliability, and data freshness, primarily on Google Cloud Platform (GCP).

Key Responsibilities

1. Data Pipelines & Platform Engineering (Batch & Streaming)
  • Design, build, and maintain batch and real-time data pipelines
  • Work with Pub/Sub, Cloud Run, and BigQuery
  • Develop data processing logic using Python (pandas, PySpark) and SQL
  • Build real-time ingestion services supporting:Low-latency ingestionIdempotency and de-duplicationData validation and schema evolution
  • Implement layered data architectures:Raw → Curated → Analytics-ready datasets
  • Handle late-arriving data, replays, and historical backfills

2. Real-Time Data Streaming & Processing
  • Participate in designing event-driven architectures
  • Implement streaming logic for:Real-time / near-real-time aggregationsOperational and monitoring datasets
  • Understand and apply exactly-once or effectively-once processing semantics
  • Monitor streaming pipelines for latency, throughput, and failures

3. Data Modeling & Data Warehousing
  • Design and maintain analytics-optimized BigQuery data models
  • Apply appropriate:PartitioningClustering
  • Support high-ingestion-rate tables and high-performance analytical queries
  • Ensure schema consistency across development and production environments

4. Analytics & Machine Learning Enablement
  • Build high-quality datasets for:Reporting and dashboardsTime-series analysisMachine learning feature generation
  • Collaborate with analysts and data scientists to:Understand data requirementsValidate data accuracy and freshness

5. Cloud Infrastructure & Engineering Practices
  • Containerize data services using Docker
  • Build and deploy via Cloud Build and Artifact Registry
  • Operate Cloud Run services and scheduled jobs
  • Assist with:Service accounts and IAM rolesSecrets and environment configuration
  • Contribute to CI/CD automation and deployment workflows

6. Data Quality, Governance & Reliability
  • Implement data quality checks for both streaming and batch pipelines
  • Help identify and resolve:Data delaysMissing or duplicate dataSchema breaking changes
  • Maintain documentation, including:Data dictionariesStreaming architecture diagramsOperational runbooks
  • Ensure pipelines are auditable, reproducible, and reliable

Required Qualifications

Minimum Requirements
  • Bachelor's degree in Computer Science, Data Engineering, Information Systems, or a related technical field
  • 2+ years of experience in data engineering, backend engineering, or data platform roles
  • Strong Python skills (pandas and/or PySpark)
  • Solid SQL skills (BigQuery experience preferred)
  • Hands-on experience building or maintaining production data pipelines
  • Understanding of batch vs real-time streaming data processing concepts

Technical Competencies
  • Familiarity with event-driven architectures
  • Understanding of data modeling and data warehouse design
  • Experience handling schema evolution and historical backfills
  • Basic performance, scalability, and cost-optimization awareness

Engineering & DevOps Skills
  • Experience with Docker and containerized applications
  • Familiarity with Git-based development workflows
  • Exposure to CI/CD pipelines
  • Ability to troubleshoot and debug production issues

Nice to Have
  • Experience with real-time streaming systems (Pub/Sub, Kafka, Dataflow)
  • Exposure to time-series or near-real-time analytics
  • Familiarity with:Dataflow / Apache BeamVertex AIBI tools such as Tableau or Looker
  • Experience working with multi-region or multi-currency datasets

What Success Looks Like
  • Data pipelines run reliably and with low latency
  • Streaming and batch datasets are consistent and trustworthy
  • Data freshness SLAs are met
  • Downstream analytics and ML teams confidently rely on the data platform

Why Join Us
  • Work on modern real-time data platforms
  • Clear growth path toward Senior Data Engineer
  • Strong engineering ownership and technical depth
  • Cloud-native environment focused on long-term maintainability

数据工程师(Data Engineer)

工作地点:新加坡

团队:数据与分析团队

汇报对象:数据负责人 / 数据平台主管

岗位概述

我们正在招聘一名 具有 2 年及以上相关经验的数据工程师,负责设计,构建和维护 可扩展,稳定,生产级的数据平台,为数据分析,机器学习和业务决策提供可靠的数据支持。该岗位将同时覆盖 实时数据流(Real-time Streaming)与离线批处理(Batch Processing), 技术栈以 Google Cloud Platform(GCP) 为核心,强调 工程质量,系统稳定性与数据时效性。

工作职责

1. 数据管道与平台建设(批处理 + 实时流)
  • 设计并维护 实时与离线数据管道
  • 使用 Pub/Sub,Cloud Run,BigQuery
  • 使用 Python(pandas,PySpark)与 SQL 进行数据处理
  • 构建 实时数据接入服务,支持:低延迟写入幂等处理与去重数据校验与 Schema 演进
  • 落地分层数据架构:原始层(Raw)→ 清洗层(Curated)→ 分析层(Analytics-ready)
  • 处理 延迟数据,乱序数据,数据回放与历史补数

2. 实时数据流与流式处理
  • 参与设计并实现 事件驱动架构
  • 实现流式处理逻辑,包括:实时/准实时指标计算实时监控与运营数据集
  • 理解并实践 Exactly-once 或 Effectively-once 处理语义
  • 监控实时数据链路的延迟,吞吐量与异常情况

3. 数据建模与数据仓库
  • 设计和维护 BigQuery 分析型数据模型
  • 合理使用分区(Partitioning)与聚簇(Clustering)
  • 支持高频写入与高性能分析查询
  • 保证 开发环境与生产环境 Schema 一致性

4. 数据分析与机器学习支持
  • 构建可复用的数据集,用于:报表与分析时间序列分析机器学习特征工程
  • 与数据分析师,数据科学家协作:理解数据需求校验数据准确性与时效性

5. 云基础设施与工程化
  • 使用 Docker 构建和部署数据服务
  • 通过 Cloud Build / Artifact Registry 进行版本管理
  • 运行 Cloud Run 服务与定时任务
  • 配合完成:Service Account 与 IAM 权限配置环境变量与密钥管理
  • 参与 CI/CD 自动化流程建设

6. 数据质量,治理与稳定性
  • 实施数据质量校验与监控
  • 协助发现并处理:数据延迟数据缺失Schema 变更风险
  • 维护数据文档,数据流图与运维说明
  • 确保数据 可追溯,可复现

任职要求

基本要求(必须)
  • 计算机科学,数据工程,信息系统或相关技术专业本科及以上学历
  • 2 年及以上数据工程 / 后端 / 数据平台相关工作经验
  • 熟练使用 Python(pandas / PySpark 至少其一)
  • 熟练编写 SQL(有 BigQuery 经验优先)
  • 真实生产环境 的数据管道建设或维护经验
  • 理解 批处理与实时流处理 的基本原理
  • 熟悉事件驱动架构与流式处理思路
  • 理解数据建模与数据仓库设计
  • 能处理 Schema 演进与历史数据补数
  • 具备基础的性能与成本意识

工程能力要求
  • 具备 Docker 使用经验
  • 熟悉 Git 基本工作流
  • 能配合 CI/CD 流程完成部署
  • 具备基础的问题定位与排查能力

加分项(Nice to Have)
  • 实时数据流系统 经验(Pub/Sub / Kafka / Dataflow)
  • 有时间序列或准实时分析经验
  • 熟悉:Dataflow / Apache BeamVertex AIBI 工具(Tableau / Looker)
  • 有多区域或多币种数据处理经验

成功标准
  • 能稳定交付 可运行,可维护的数据管道
  • 实时与离线数据链路稳定,可监控
  • 数据质量满足分析与下游使用要求
  • 能独立承担中等复杂度的数据工程任务

为什么加入我们
  • 深入参与 实时数据平台与核心数据系统建设
  • 技术成长路径清晰,工程实践扎实
  • 有机会向高级数据工程师 / 技术专家发展
  • 云原生技术栈,强调工程质量与长期维护
Related tags
-
JOB SUMMARY
Data Engineer
STACKTECH PTE. LTD.
Singapore
13 days ago
N/A
Full-time

Data Engineer